A New Method for Conflict Resoluton Based on Multi-Agent Reinforcement Learning Algorithms

نویسندگان

  • Donghua Li
  • Ju Jiang
  • Huajun Gong
  • Jianye Liu
  • Bin Jiang
چکیده

Conflict resolution is a research topic for game theory (GT) and conflict analysis. A decision support system (DSS) is very helpful for conflict decision making. Reinforcement learning (RL) is an efficient method to learn knowledge by agents themselves. Although successful applications of RL have been reported in single-agent domain, a lot of work should be done in the case of multi-agent domain. Nash Q-learning is a famous learning algorithm for multi-agent RL. Based on the Nash Qlearning, a novel DSS: multi-agent RL based DSS (MRLDSS) is proposed in this paper and is tested by using several typical examples of conflict resolution. Experimental results show that the proposed architecture and algorithm can solve conflict resolution problems correctly and efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

Multi-objective optimization perspectives on reinforcement learning algorithms using reward vectors

Reinforcement learning is a machine learning area that studies which actions an agent can take in order to optimize a cumulative reward function. Recently, a new class of reinforcement learning algorithms with multiple, possibly conflicting, reward functions was proposed. We call this class of algorithms the multi-objective reinforcement learning (MORL) paradigm. We give an overview on multi-ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008